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NOMENCLATURE

Coefficients of the amplitude function and of the velocity
potential function.

Cn T e, tanh kﬁn %) characteristic length.

Damping coefficient of nth mode.

Components of the liquid force in x, y, z-axis directions
respectively.

Components of the liguid moment about %, y, z-axis.
Geometrical equation of the free surface.

Kinetic energy.

Potential energy.

Tank excitation amplitude (Mechanical Model).
Displacement of the sloshing mass at the wall.
Tank excitation amplitude (liguid).
Non-dimensional tank excitation amplitude.

Tank radius.

Ligquid depth.

Non-dimensional liguid depth.

Total liquid mass.

nth sloshing mass.

Non-sloshing mass,

Order of non-linear spring.

Tank fixed coordinate system.

Non-dimensional tank fixed coordinate system.

Time

Fluid velocity components.



Uy

ol

Eall

Coordinates of the sloshing mass.

th . .
of them, n liguid surface mode.

(]

Amplitud
Non-dimensional amplitude of the m, nth ligquid surface mode.
Amplitude of the m, nth component of the liguid velocity
potential.

Non-dimensional amplitude of the m,nth component of the
liquid velocity potential,

nth root of Jlf(en) =0

Defined by Jm’(s\nn a) = 0.

>\mn
A =

o — =
sz tanh Akz h

Free surface displacement above the mean. level of ligquid.
Non-dimensional free surface displacement above the mean
level of liquid.

Liguid density.

Velocity potential.

Non-dimensional velocity potential.



SUMMARY

Liquid forces and moments dué to longitudinal excitation of a rigid circular
cylindrical container were obtained from nonlinear liguid theory. Through the
anti-symmetric one-half-subharmonic response of the liquid these forces and
moments will influence the lateral stability of a space vehicle,

A mechanical model describing this nonlinear liguid response has been
derived and compared with liquid theory. The model consists of a mass with a
moment of inertia which is rigidly connected to the container, and of inde-
pendently oscillating masspoints capable of rolling on a guiding surface of
paraboloidal form. Each of these masspoints is coupled with a nonlinear third
order spring capable of moving up and down the longitudinal axis of the con-

tainer.
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1. INTRODUCTION

During the powered flight of a space vehicle longitudinal excitation can
occur by dynamic coupling of structure and engine thrust through rough com-
bustion or through thrust build-up or decay. It has been found that liquid in
a container that is excited harmonically with a forecing freguency (2 will respond
predominantly with & one-half subharmonic oscillation [1,2], i.e., half the
frequency of the excitation.

Since during longitudinal excitation a one-half subharmonic response of the
iiquid in antisymmetric mode arises, and since this motion influences the lateral
stability behavior of the space vehicle, an equivalent mechanical model should
be derived that precisely describes this propellant motion.

For a circular cylindrical rigid container undergoing a longitudinal exci-
tation, Dodge, Kana and Abramson [3] treated the nonlinear liquid problem,
determined the free liguid surface elevations, and compared them with experi-
mental results. The present work corntinues these investigations and determines
in addition the pressure distributioné, ligquid forces, and moments. To describe
the most important mode in application, namely the one-half subharmonic motion,
the same equivalent nonlinear mechanical model shall be employed as has been
derived for the translational case of excitation [4]. It consists of a mass
having a moment of inertia, being rigidly attached to the container wall, and
also having independently oscillating mass points for each vibration mode
rolling on guiding surfaces of paraboloidal shape. Each of these mass points
is coupled with a nonlinear spring capable of moving up and down the longitudi-
nal axis of the container. The complete mechanical model is derived and com-
pared with theoretical and experimental results. The unknown parameter of the

model can thus be approximately obtained.



2. NON-LINEAR LIQUID THEORY

2.1 The Basic Eguations

In this section the non-linear liguid wave equations wvalid for the case
of a rigid. container, are developed, neglecting capillary and surface tension
éffects on the wave surface, We assume that the liguid is inviscid and that
its motion is irrotational, an assumption which is justified if the excitation
freguency is not too close to one of the natural frequencies. The general
method employed to solve the problem is similar to that used by Dodge, Kana
and Abramson [3]. However, vhereas Dodge, Kana and Abramson concentrate only
on the ligquid surface motion, we shall dedicate most of the effort on the com-
rutation of the velocity potential, the pressure distribution, the liguid force
and the liquid moment.

The reference coordinate system employed (Figure 1) is fixed at the mean
jev=1l oI the liquid, and thus has the same motion as the tank. The base
T the tank is excited with an axial motion given by 2 = ZO cos Nut,

vnere @ i

[

the frequency of the predominant liquid motiorne. Allowing N to
zssume various positive values specifies whether the predoginant liguid
moticn i1s sutharmonic, harmonic, or superharmonic.

Since the motion is irrotational, there exists a velceity potential ©, such

g+
naT

~ V= - grad ¢ (1)

sv in comporents (u, v, and w in the r, 6, and z directions of the moving

ccordinate system respectively),



T - - .:E g-Q

vV o= T 3’ and (2)
s el - -Q?

W = az

Since the fluid is incompressible, the potential o must satisfy Laplace's

equation
Vo= 0
o- - 2- 2~
ie. 2o, 2,588,090 (3)
ar ar r o8 oz

Equation (3) must now be solved using the boundary conditions at the free
surface and at the walls and bottom of the tank. The latter requires that

the fluid velocity normal to the tank walls and bottom must be zero.

Consequently,
= - g% =0 at r=a ()
and
e-2.0 at 7=on (5)
oz
N The solution of eguation (3) which also satisfies the boundary conditions

(4) and (5) is given by

cosh A (z+h)

(o] x
- - - - = - = mn
e-oa +\  a J (A _r)cosmb (6)
00 L L mn mS o mm cosh } h
m=0 n=1



where Jm(imn r) is the Bessel function of mth order and the first kind, and

imn is the nth root of the eguation
S (A, N, =0 ()
r “‘m mn r=a

&oo and all the aﬁn are functions of time that have to be determined from the

free surface boundary conditions.

The free surface boundary conditions are the dynamic and kinematic condi-
tions. The first expresses +that the pressure at the free surface must be
constant and equal to the ullage pressure and yields with Bernoulli's eqguation,

the expression

= il

%f - -l; - (g - NngZ cos Nwt)g - = [Kar/ +<% %C_E g}; __‘ (8)

where ( is the displacement of the free surface above its undisturbed position,
z = 0. (See Figure 1 for details).

Suppose S (r, 6, z, t) is the geometrical equation of the free surface.

Then S =z - ¢(r, 6, t) = O, and the kinematic boundary condition at the free

surface may be written as (See Ref. 5),

%% = 0, or in expanded form

18’

30 _ % . 3,1 33 |
L’a'%"g‘r@ a'+_2%5‘g' J - - (9)

at z=(

Q
N

In order to solve the problem one assumes that E may be written as

- @ e - -
¢ = ZJ /. & Jm()\mn r) cos mé (10)
m=0 n=1

where the émn are functions of time to be determined.




At this point we introduce a set of dimensionless variables (Ref. 3).
If the sloshing under consideration is that which grows from the k, £Zth free

' (linear) mode, then it is reasonable to assume that a?z and a are the pre-

k4
dominant amplitudes in the series expansions of @ and @, and it is appropriate

to nondimensionalize the variables by using the natural frequency and a charac-

teristic length parameter of the cofresponding free motion. Thus, let

1
W 4 5 3 i
- where w [Kkz g tanh xkzh]

o = =
wkz kg

tosw,tg r:(xutanh xuh)r;

z = (AM tanh xuh)z ;

a . " (xkz tanh >\Mh)am1 :

¢ = (X, tamn X_n)T ;

- 2 -
o (xu tanh Auh) - A .
n - ) ™mm n -3 +a 3 h °?’
mn “kl mn mn Kkz tanh hkzu
- - 2
(% _ tanh X h)°
=(, , tanh A_h X ; . kg ' -
€ "V kg o’ ® - w o>
kg
and
. b = (3, tanh & h)n (11)
W Substituting these dimensionless variables into the boundary conditions,

and expanding cosh xmn(g +b) in equation (6) into a power series in [ gives

for the dynamic boundary condition (Eguation (8)).

10



&OO+ Z Z U{_—d’mnFr - (1 - N202€ cos Not)a JJ ()\ Jeos mef

m=0 n=1

¢ (- -2 - - S ~ < B ¢
‘EZZZL
m=0 n=1 p=0 g=

. )Lamnaquprqu + l( xmnr) b+ l(x r)cos m@ cos peF. Fp

mp -
+ amnapq 2 Jm( %r)Jp()\pqr) cos (m p)eanqu

+a o pqunquJm( mnr)J (>\ r) cos mb cos peGmnqu

o p}‘mn ()\ r)J_(A__r)cos mé cos poF" F° ;=0
m pg r m+l P Pqg © C>pmnqu

N

where the dots indicate differentiation with respect to time and

" cosh Xqﬁ(g +D) = 2u€2u Ai;-+l g2u+1 |
FaB ) cosh )\aagb B L 1(2LL)' + EESE tanh )\Q’Bbj
sinh »__(C+ b) *® )\2!&5“ p,+1 g2“,+]_
of cosh )\Q,Bb . 2u) ! o8 tu I
w=0
and
. = Z L a J (A r) cos mo
m=0 n=1

The kinematic boundary condition, Eg. (9), can be written as

11

(12)

(13)

(14)



@ ® o B ® @©
N o (.r T \ R s Y
L2 (bt o ) oo m = L
m=0 n=1 m=0 n=1 p=0 g=1

, r
. lcﬁnapqunlqum + l(}\mnr)Jp + l()\pqr)cos m@ cos peF

Qﬁnapq (xmnr) J (X r) cos (m - p)eF
- TEBE J(x r)d (A_r) cos mé cos peF.
O‘/mnapq r m'mn P+ 1 joJe) p mn

Phin
-«

a
mn pg r m +1

(A r)d (xp r) cos mé cos poF. - (15)

We can now solve equations (12) and (15) to give approximate values of the Oﬁn

for special cases,

2,2 Antisymmetrical One-half Subharmonic Sloshing

Experimental evidence indicates that the i-subharmonic liguid motion is

predominant. The mechanical model that shall be derived should therefore
describe this motion. For this reason we investigate the large amplitude
liquid motion whose period is twice that of the forcing function (N =2 in
equations (12) and (15)), corresponding to the first (lowest frequency) anti-
symmetrical slcshing mode. For this case o and a,, are the predominant
empiitudes in the series expansions for { and ¢, so that k = 4 = 1 in equations
(11). Obvicusly, for practical reasons, we can only determine a finite number

of terms in equations (12) and (15). Following the steps of Ref. 3 and restrict-

ing the solution to terms of order three and less, we need to consider only the

. - 1 z 2 2 1 2
following ¢'s and a's: abo( ), «. ( >, le( ), o (2) ( ), ao ( )

(2)

o1 , where the superscript denotes the order of magnitude of the «'s and a's

a

> 0 B » and

11

a

relative to Qil all'

12.




Expanding equation (12) with this restriction in a Fourier series of cos m8,

one obtains:

r. 2
[80 + (80175(Ap¥) = (1 - ko7e cos 2ot)ag; To(Ag 7) + 5aia), T3 (03709, (3370}

1 2.2
3 91019500 1T (0 ) + o

17 2 I 001703, Gy v)

A
2 2 ™M1
r)Jl(lllr) tanh AP - o, J2 (

2 2

o129, (Ag k111")‘]1“11”}_] +

T\JIH

[{ OlAOlallJl(A r)tanh Aoy P JO(AOlr)

& 197 (A17) [+ 850 130(A r)tanh Aab 2 25141175( A  T)tanh A b]

2 1.
allJl(}\llr)(l - ko"e cos 20t) + EaglallkglJl()\llr)Jg( )\er)ta.nh Aglb}

2 r)tanh xOlb

{ %1% 1212171 (A7) (A 1) + 20 e A To(horr)d (g

tanh )\llb

- —_— {5 A N L i 2 Y A { Y b - .

A

11 2 l(x )Jl(xllr)Jl(xllr)tanh -

ll 11

32

5918172 11 I3 37097 (05 7)3, (A r)tanh 2 D
2

2 Ay

- 3048, 4

J2(Kllr)Jl(Kllr)Jl(xllr)tanh Ap1P
o101 M1 Aoy Tp(h  1)TS (00 7) + b ey a) 2 3, (1 2)9, (0, 7)

LR l(x r)Jg(KElr) tanh A b tanh A,;b

13




A Ay

11 21 :
- 2,2y, - Jg(kllr)Jg(Kglr) - oy, = J3(A21r)Jl(xllr)}J cos ©

+ L{e 112119121709, () tanh Ay b + &, 3500, 7)

- Ay g(xglr)(l - Mcge cos 2at)}

12 2 12 2
- {2°11A11J2( A7) (0 7))+ Zayy 11J1(K )3, (A7) tanh” Apb
LR J.(h )3 (n.r)}| cos 26
oy 5 IolAgr)I ()} eo
1. .
+ L{ - ElJl(x r)J (x r)tanh AP+ S e lJl(Allr)Jg(Aglr) tanh )0
-1 283 a3 O )3, (0 r)T, (A r)tanh A D
5 12 11 M18119p A 1 7)o 0A 70T Uy 11
+ 20733 (x 1r)d (A ;r)d (A, r) tanh A,.X (16)
2%1M1%119) VAT A 11
2
- 1£=a J (A r)d. (A ,r)J. (A, r) tanh A .D
@1 Ty F11YoV MtV ATV 11
oy @ Ay Ay To(Ag 3 )T (g 7)
+ oo A Ay l(x r)JZ(Aglr) tanh A ;b tanh A, b
M1 Aoy >
- 2oy = I, PO 7) - a0y 2 T500 7, (Ay57) ) | cos 38 ~O

Since equation (16) must be valid for all values of 6, each term of the

series must be independently egual to zero; thus one obtains three equations.

Tne part of equation (16) which is independent of 6 is

1k

}



¢ - - )_:‘ S 2 |9 o i °
&, t {& &y O(A (- o € co o’*)aOl Q(“ol )
1 1122 o1
+ = R =
z ®q8499) (>‘ v} @Ay 2(}‘11 r) 4oy 2 I (A7)
12 2 2 M )
+ 30,9 (A7) - e - I )T (M) = 0 ()

where vse has been made of the fact that xll tanh xllb = 1.
We now expand e vatiun (17) in a Bessel sesies of Jo(xonr), from which:

2ttain

{8, + 0.119345 & o - (0.059673 37, +0.059673)a , )

~—

- O.lthBzaijall NN

+ {6’01 - (1 - s57¢ =o- EO't)a)l

0

oy - (0. 070796x - 0.960741) J3 (A r) * eeen = 0

Equatica {18) no y elcs the folloving two ovdi.aiy non-linesi dizferer tia.

equaticns:
2 .
o) + 1107345 - 2 + O50F, . = :
o T 0.119585h (0.059672 A, + 0.059¢3)al = 0 (1)

for the par~ .7 equat:~n (2) which is independent .. lLoth 8 arnd .. and

. 2 o 482

Ay (L - =c"e cr. ;c“)aOl - 0.121 zoilali

- le.c e xi} . 060TEL) = 0 (20

cr the part of equation “12) which is independenc .f o, bu® dependint n ..

15




If we now evpand the part of eguation (16) which varies with cos ® in a Bessel
series of Jl(hlnr) and that which varies with cos 26 in a Bessel series of

Jg(kgnr), we obtain respectively,

2, 2

X 2
&g, - (1 - 4d"e cos 2ot)a,, + 0.104558\] & 87,
- 0.2788210° & & . - 0.1651184 & + 0 1986864, ,a
: 11711711 ’ 11701 . 11721

- O.l65]_l8)gol tanh XOlbablall

+ o .« (o.165118x01 tanh xOlb-+ 0.171812x

11701 Olkll)

+ o.198686>\2l tanh ),

1P

2
- allaél(o.198686xel tanh A, b + 0.3103u3xll

- o.ozezglxllxgl)}Il(xllr) cos § =0 (21)

and

[dél - (1 - hoge cos 2ot) a,, t 0.35080761

o1 1%31

2 2
- oil(O.lTSMO3 - O.O65931kll)]J2(k21r) cos 26 = 0 (22)

Similarly, from equation (15) oire obtains the following three nonlinear ordinary

differential eguations:

tanh A, Db - 0.263074x2 a .a ]JO(xOlr) = 0, (23)

oyt %1201 11%1%11

16




. 2
[all + 0y - 0. 122515Allailall + 0.171812Aolhllaila01
a11°b1(o 171812A01xll - 0. 165118x01)
o 8,,(0.0222912 12y, - O. 3103hsxll)
a. .o -(0.022291) -0 3103M3A2
11971 11721 : 11
. 2 - .
+ o.198686x21)JJ1(xllr) cos 6 = 0 (24)
and
[, + o5;),; tanh A, D + 0. u8267oxll 11811 ¥o(Ayqr) cos 26 = 0 (25)

Equations (20) to (25) have to be solved for the o's and a's. Linearizing

equations (21) and (24) and combining them, one obtains

. 2 ~
a)q + (1.— 40°e cos 2crt)a11 =0

1

which is recognized as the Mathieu equation, a well-known result of linear
theory.
Equations (20) through (25) are now combined to give three second-order

ordinary differential eguations in the time-varying amplitudes a and

117 %01

a2l. The results are (retaining 3rd order terms only),

. 2 2
g, * (1 - 4o e cos 20t)all[l-+ K80, F K8 t K2la21)

+ 0. o3u78ox 2 + k a2 a,. +0.1651183

11811811 T ¥11%71%10 01211

- O.l98686a21 aq + kOlaOlall kzlazléll =0 (26)

17



. 2
91 + Ay tenh Ay b (1 - Lo"¢ cos 20t)a

o1 " allall(o.121482>\ol tanh A, b -

2 2 .2 2
- 0.26307uxll) + allD\O:L tanh xOlb(o.o70796 A7 - 0.060741) +
2
+ 0.263074 A7;] = O (27)
and
. 2 o
&, + A, tenh xelb(l - 4bo"¢ cos 2ct)a21 + allall(o.3508on21 tanh A, b
- 0.482670 xg ) + &° (A, tanh A, b(0.175403 - 0.065931 xg )
: 11 1121 217\, : 11
- 0.482670 32,7 = 0 (28)
’ 11
where

0.045199 - o.ou3h38x01 0.010759>\ll + o.o9soox21

K = 0.122515 - + -
11 tanh }‘Olb tanh )‘Zlb

0.1497932%
Aoy tanhig b 7

KOl = O.3u362h )\Ol}\ll
2
K21 = 0.620686 All - 0.044582 XllAQl
0 oh5199x3 0 1#9793ku 0 010759k3
i . 11 : 11 : 11

+ -
11 tanh)\Olb )\21 tanh)\zlb tanh leb

o.171812xll
tanh )\Olb

by
]

= 0.165118 + , and

0l

18



2
0.310343 A7, ) 0.02229)
Ay tamh Ay,b 7 tanh A,D

k.. = 0.198686 + (28-a)

21

Equations (27), (28), and (29) are solved assuming a solution of the form

(1) _. (3) ..
a;, = A sinct + A13 sin 3ot,

a = A(g) + Agg) cos 2¢gt , and

01l 00
(2) (2) _.
85 A2O + A22 sin 20t , (29)

or of the form

_ p(1) (3) .
all = B cos ot + 323 sin 3ot,
_=(2) |, (2)
aOl = BOO + B02 cos 20t , and
I -0 N €-))
8y = BQO + B,,’ cos 20t (30)

where the superscript in parentheses indicates the order of the constants.
However, the solution of the form of equations (30) is unstable (see Ref. 3)
and can therefore not be observed experimentally.

The solution of equations (26) through (28) yields the following values
for the A's of equation (30):

. 2 2 .
) o.o6616102 1.77918k4g™ - 0.925666 i gc ejAe ’

1.9.’220580-2 -1+ 80 ¢

e
1

o

b=
n

2 B}
2 2 27 1 + 3.702665¢0 ¢ 2
AT = g 0.066161¢ 5
o2 * ozt L1.9eeo58c2 -1+ 8er2JA

19



=
"
[u)
o=
"

2 2 | 0. 1206662 L: 215697¢° - 0.504152 - 20 eJ A2,
2. u113700 -1+ 8c ¢

1+ 1.oo8sou02e
2.4113706° - 1 + 8¢

2 2 20
Asy = a, A" @ - 0.1206660L n 2_] A s

) 2 3
A33 _ _E%}jL_ Ar al3A3 - - 25 € a4 g [0.123625
9¢ -1 9¢ -1 9¢ -1

2 2 2
+ 0.7417536° - 0.0398800° - 1.u3oegu02eaoo +0.357558a,, + 0.TIS11T6 ea

+ o.66716602a02 + 1.o93h66ogea - 0.273366a22 - o.5u673302ea

20 22

- 0.7628165%8,,] ,

e
A° - [02 -1 - 202e - J//[- 0.37087T7 - O. 989oouc e - 0. ooslooo-2
90-1
+0.715117a_ + l.h3023hoeeaoo - 0.357558a, - 1.u3oe3uogea02
+ o.ooéeguo?ao2 - 0.546733a,, - 1.093466026a20 +0.273366a.,,
1.0934660° 0.0320286%, . - 2& ] (31)
+ 1.093 0'65-22+- 022 °€al3’

Thus, the non-dimensional displacement of the free surface is given by the

expression:

= (A Sinot +.A3

13 Sin 30t) J; ()\llr)cos 6 +

(32)

2 2 2 2
+ (AOO + A, Cos 20t) I (AOlr) +(A20 + A5, Cos 20t) J, (Aglr) Cos 29

20



The a's of equations (19) through (26) are assumed to be of the form:

o = M Sin 20t ,

e = ¢ cos ot 4 ct® cos 30t

11 13
- ~(2) (2)
% = COO + 002 Sin 20t , and
o, = cég) + cég) Sin 20t (33)

Substituting equations (33) into equations (19) through (26) and making use

of equations (32) yield, (for the case h 2 2a):

0.060T41ch
o.070796x§l - 0.060T7k41

I

2
. J(—_0.060Tk1cA 2 2(A ), +207eh )
2

o.o70796x§l - o.o6o7ur/ 0.070796x§l - 0.0607k41

)
o . 20A02 + o.131535xll(Ac)
M
02 Ay, tenh Ay D

2
. . 2ch,, + O.2hl335xll(AC)
22 ~ A, tanh A Db ’

. c2(o.o7o7'96>§l - 0.060741) + 0.060741cAC - 20002 +Ao, - ucgero
13 - 2[0.182223cA - c(o.070796xil - 0.060741)] ’

21




2
-1 2 C”  0.119345
M= 3= {(0.059673x]; + 0.059673) % - ==2-2 aAC; . | (3%)

Thus, the non-dimensional velocity potential may be written as

coshxll(z+b)
@ ©M sin 20t + (C cosot + C13 cos 3ot) Jl (Allr)cos e coshkllb
cosh }‘Ol (z+b)
+ (Cop sin 20t) T (A7) —55; AgL?
cosh Ay, (z+b)
+ (Cyp sin 20t) I, (A7) cos 20 —— ot (35)

and the dimensional velocity potential, 6, as obtained from eguation (33) and

(34) with the use of equations (11) yields the expression
- - - 3
® = VB ()\llta.nh )‘llh) 2 M sin 20t

cosh X, (z+n)

+ (C cos ut + C,, cos 3ut) J; (ill;) cos 9

13 cosh Xllh

cosh Xy (z+h)

+ (CO2 sin 2ut) Iy (AOlr) vy XOlh
) o cosh i21 (z+h)
. + (C22 sin 2uwt) I, (Aglr) cos 28 ———— Rorh (35-a)

The pressure in the liquid at any position and at any time can be obtained

from the unsteady Bernoulli equation, (8), and equation (35). It is
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1 SR R e -
%=T°+§- (g - b X_ cos 2“’%)2'%‘_\8:?/ +é%e) +\%}J (36)

’ This yields the following expression for the pressure distribution

cosh All(z+h)

. p=p - pelz-C+85,) - psinat (0 I3 (hyyr)cos o cosh %),h i
) i cosh ill(2+h)
- p sin 3wt i3GUCl3 l(k r)COS 6 cosh Xllh + SlJ’

Y cosh Ay, (z+h)
0l cosh XOlh

+ p cos 2ut {26aM + 2Gul,, T (X

cosh 121 (z+h)

2 - =\
+ 26w C o J 2()\er) cos 26 — = - 5, + b Xo(z - g)j (37)
21
where
23
e - 2
G = & ()\ll tanh xllh) s
cosh },, (z+h) - Jd (i r).
1.2 11 s - 117
S, = =G°C cos 8 J(%,.r) - LA
1°2 cosh X ,B EACH A T |
-2J ()\21 r) L. L 5 GF) cos 26 cosh &, (z+h)
2L +\( s -2/ Y1\ T/ co cosh L..h
(12 r) 21
1
. cosh A.. (z+h)
= 01
- CO2 Jl(AOlr) cosh XOlh

cosh A, (z+h) cosh Ay (z+h)
cosh Xllh cosh Xglh

2
+GCC,, 5 2 l( xllr)J (Azlr)sm 8 sin 26
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° sinh i, (z+h) sinh ., (z+h)
Chyy 91 (A )cos 6 coshl]7: 7 {Co2t0r70(Ros ™) cosho}x h
11 01
sinh 3 z+h
CophoyTpl Ay Ticos 28 Cos:lgl (121 ! ’
Aoy
and
s, = 1 6°cd (%,.7) - L0y0) 2 cos2e[cosh Ay (2+h).2
2" L [olP11 .t com v
11 , 11
cosh A, (z+h) 2
1 .22 2,0 -\ .2 T 11
+3 GC Jl(xllr)51n 9 L CE |

~sinh 1}, (z+n) -2

220 2 2
+E G¢C )‘11J1()‘ r)cos 9‘_ cosh kb ]

By integration of the appropriate pressure components, the liquid forces
and moments can be obtained.

It is for the components of the liquid force:

21 _
F, = J" J’ _ cos 6 Rdedz (38)
o r=a
2n ¢ _
F = f f p{_ sin 6Rdedz = O (39)
y o} -h r=a
and
2m a _ _
F = [ p(_  rdedr (ko)
z o) o z=-h

2k




where:
Plfca ® Pg - ple(z - O + SQIE:a]

cosh Kll (z+)
cosh kllh

- p sin uﬁiGuCJl(illa)cos 8

coﬂ.ﬁl(ﬁh)
cosh Allh 1

}
ot

sin 3uﬁi3GuCl3Jl(Xlla) cos 8

cosh Ay, (z+h)

+
o

cos 2um12GuJM2 + 2Gw CoeJo(AOla) ok T8

cosh X?l (z+n)

+ 26w Cypdy(Ay18) cos 26 —— o Sol.
1 r=a

+hX (2 - D) (82)

D =p_ - ple(-h-T) +s ]
seen 0 ° 2lE:-h

- - - 1 “
- p sin wt{Gw €I (R T) cos @ coeh X, B *‘bllg__h

- . - 3 = ‘_—l - \{

- - - - 1

+ p cos 2u¢i?Gu:M2+- 2Gw 002 JO(AOlr) ESEE—KEZK

+ 26w Cyy I, (Ry,7) cos 26 —e— - 5 _| +haPX (-n - 0f (42)
22 Y2 VAo cosh A,h el o
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and

~ 1

[
o Ay tamh A jh

A sin wt Jl(xlla) cos 6

Integration of these expressions then yields:

;g‘ = 1 (%)(w%l)(o.wmuu) Cf sin of

F

;X = o

ng

Ez ra | 1 1 ) 2

= 1t &l —3 - — | (0.016191)C
(tanh xllh) (tanh xllh)

S 2
(8 (_w 1 W - -
+3J | 1) tanh (%;;5) (1.086257)M, - b 11) e cos 2ut

The liquid moment is determined from:

Moo= - yaF +J" zdF = 0
bottom z sides
M. = xdF_ + zdF.
Y J;ottom z j;ides x
M = 0

where the variables inside the double integral are defined by egs. (38),

and (L0).

The integration yields, for the liquid moments,

26

(43)

(L)

(45)

(46)

~—
=

-~

~—

(48)

(49)

(39)

(50)



M. = o0 (51)

My 8, _0 (o) & L-tamh” AP 1 .
mea - 'L\E)\’w—l? L(3) *—p " " Tenn )\llh_J(O.O93224)CJ'51nwt (52).

It can be noticed that the horizontal component of the liquid force remains
stationary, i.e. it does not rotate, indicating that the coupling effect
(present in the case of transverse excitation) does not appear in the case of
longitudinal excitation.

The liquid moment has only one non-zero component, M

'f.
J
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3. NONLINEAR MECHANICAL SLOSH MODEL

FOR LONGITUDINAL EXCITATION

The analytical mechanical model shall describe the antisymmetric liquid
motion. The sloshing part of the liquid may be representéd by a liquid volume
of height, hs’ corresponding to the modal sloshing mass, m. The ratio of the
first modal sloshing mass, o, to the total liquid mass, m, is considered (as
in lateral sloshing) equal to the ratio of the height of the sloshing part éf

the liquid, hs’ to the total height of the liquid, h, i.e.,

h
EE ) m_ 2 tanh \Fs a2/

B kﬁs 2)‘&2_ %)

The same nonlinear mechanical model as in the case of lateral liquid sloshing
shall be employed. Therefore, the same relation of displacement of the center

of gravity of the sloshing part of the liquid is valid, i.e.

N
n

I\J'O

o0
"

n N

where

Q
]

s €S tanh (es 1—;") (55)

It means that the sloshing mass m is constrained to move on a rotational

paraboloid, which is subjected to longitudinal excitation

z(t) = Z, cos (t (56)
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The mass point is furthermore coupled with a nonlinear spring capable of moving

up and down the longitudinal axis of the container,

3.1 Eqguations of Motion

The equations of motion of the above described mechanical model, which
should describe the antisymmetric liquid motion also for longitudinal excita-
tion, are derived with the help of the Lagrange equation. This model, subjected
to excitation in the z-direction and exhibiting a viscous damping, yields the

expression for the kinetic energy in the form

D 2 2
T = 5 [ks + (zs - QZ sin at)°] (57)

which, by the introduction of the equation of constraint,
=0 (58)

yields the kinetic energy of the sloshing mass mg

1

C .
.2 -8 . . =
T > M [Xs 4—&:; x & - QZb sin Qt/fj (59)

It may be mentioned here <that the motion of the sloshing mass point is
restricted to the parabola in the xz-plane.
The potential energy is given by

X

s
2n-1
V= msg(zS-F Z_ cos at) + j; k X _ dx (60)

which yields with the equation of constraint, (58), the expression
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Cs 2 ks 2n
= _— —_ <
Vemgsz X +meZ cosqt+ 5 g (61)

The first term is the gravitational potential, the second term is due to
change of the container location during the excitation, while the last term
- represents the energy stored in the nonlinear spring of order (en-1).
The demping is assumed to be viscous, such that the mass point is sub-
Jected to a damping force proportional to its velocity relative to the para-

boloid. The dissipation function therefore is given by the expression

mlUOI

5 4.2 . \
D = (Zs + xi) (62)

and, with

Es = Emsu%Ys (£3)
and the eguation of constraint, (58), it becomes
2
s

] (€1)

[ .2 Cz 2
D=m w_y L' +—= ¥ x
s s's S g° s

The introduction of these expressions into the Lagrange equation

d | oT oT aD ov
— - + + 2 .
AN % X 0 (65)
° yields the equation of motion
2 2
. C C k
4 s 2 s 2 2. 2 . S 2n-2
- .. . _s + S N + )
Xs + Ewsysxs K; + 2 xs) 2 (szs szs) + W K}' 2 Xs /ks
a a m W
s s
Cs 2
8 x, — QZ cos Qt (66)

30




Introducing the dimensionless guantities

XS
gs -y (67)
and
ksa2n—2
as = 5 (68)
oWy

the above equation of motion yields

n N

2 en-2
) + ws(l+ a8 )

.éS + ngYS.gs(l + Cigi) + Ci( gs.gi + § .g.S gS

2
= §SCS§22 &—aE) cos Ot (69)

This eguation governs the motion of the sloshing mass due to longitudinal
excitation, ZO cos (t, of the system. It can be seen that the nonlinesar
ordinary time differential equation represents a Hill-type differential ecustion
in which the coefficient is a function of time. Linearization of this equa-

tion yields the expression

.e . 2 2 ZO :

ES'+ 2wsyS§S + [ws B Cs { K(Ei/ cos QtJ §s =0 (70)
which represents & Mathieu-differential equation, as is alsc obtained from
the linear theory.

3.2 Solution of the Equations of Motion'

Of the various methods used in obtaining an approximate solution to non-
linear differential equations, the averaging procedure of Ritz seems to be the

most appropriate one for this problem.
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3.2.1 Undamped Response

If the motion is undamped, v, = O, the differential eguation (69) is

Z
o

2. on-2 2 e
(1 + o )gs = 00 - cos qt (71)

. . v
§s + C§(§s§s+ §§§S) + Wg a

An approximate solution for the steady state motion is given by

ES = As sin g t (72)

and, (with Ot = 1), the Ritz condition,

bm .
[ DIE,v)lsingar=0 (72)
0
yields
b 2 2 2
o) LT 2, Q0 a3 .. 21 _ Q 43 .37
J"oi TAS 51n2+CS\TAS sin 5 cos™ 3 m As sin 2)

2 . T en-2 . 2n-2 1°
+ AS sin §kl+ asAq sin E)

=]

Z

2 2p ain I in I gm =
-C. 3 QAS sin 7 cos TJ sin 5 d7 = O (7%)
After evaluating the integrals with
2m
..en T 2n!
f sin™" = dT = (75)

and r2 = , the expression for the frequency response function is

memlom
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1+ a A
2n-1 2 “5's
2 2 !
= L (76)
1 1 2,2 1 0
+ = .= _°
T 8 CsAs 2 Cs a

The above solution gives the stable portion of the sub-harmonic response
curve, while ES = A_ cos 7 gives the unstable portion (see Ref. 3). For a
cﬁbic spring, i.e. n = 2, the freguency response function may be sclved for

As’ and yields,

i1 1 c EQ
N r2 2 7s a
AS = o (T])
3% 1.2
in r2 8 7s

A discussion of fhe selection of a cubic spring is given in the next chapter.
The non-dimensional spring constant, o> must be determined.

For purposes of comparison with experimental data, the calculations were
performed for the test tank used by Dodge, Kana and Abramson [3] and for
excitation amplitudes, Zo = 0.0516 in. and ZO = 0,0258 in. The tank has =
radius of 2.86 in. and the fluid depth is 5.72 in. With the use of eguatiocn
(77) the fluid amplitude at the wall of the container was determined and graphed
versus r2. Comparison with Dodge, Kana and Abramson's test results and theo-
retical results reveal that o should have the magnitude of two.

The response functions for this case are shown in Figures 3 and 10 using
other values of o

A better approximation can be achieved by considering a solution of the

form
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< . Q .
E = A singt +B_ sinQt (78)

With this assumption the Ritz conditions for the determination of the unknowns

A and B_ are
S s

b

jo D[, Tlsin 5 dr = 0O (79)
and

bo o

f D[E, t]sin wdt = O (80)

o]

which yield two simultaneous nonlinear algebraic equations in As and Bs‘ For

n -2, i.e. a cubic nonlinear spring, the resulting equations are

and

Gico
]

s

. . o
1 2 2 a2 1.3 S 2 3 R3
_— - - = - = + -— + = =
KTE %) By * Cs &. 8 AsBs 2 Bs) 2 sB N Bs) 0 (82)
These nonlinear equations for AS and BS as functions of r2 were solved by
the Newton-Raphson method. The resulting solutions indicated that the maximum
magnitude of BS is less than 1% of the value of As over the frequency range of
interest .9 < r2 < 1,2. From this we can conclude that the pure one-half sub-

harmonic solution represents a very good approximation and definitely provides

an acceptable degreé of accuracy.
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3.2.2 Damped Response

The damped response is readily obtained by the solution of the non-

linear differential equation (69) which contains the damping term
. 2 - 2
2wy, (,+ C) &, §) (83)

and a third order spring (n = 2). This equation again is treated with the

Ritz averaging method by assuming & solution of the form
- . Q_t N ‘
€ A sin\F+ ¥ ) (8%)

where §_ 1s the phase of ine motion relative to the excitation function. The

Ritz conditions

b
f D[gs, 7] sin % dr = 0 (85)
o
and
b
f D[gs, T] cos % dr = 0 (86)
o

7ield the eguations

1 2 1 2 2 1 2 .2 2
TR tan ¢s T YT As Cs tanh ¢S + 18 CS As r

3 2.2 2 3 2 Zs

1 2 )
- CLA T I A+ 5C ()0 (87)

and
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2 1 2 .2 l 2,2 2

1
ST r¥ tyr cos ¢S+EysrASCs cot q;s+l6C A r
Z
. 3 2,22 3 2 1 2,0 _
- g CAT T 1t oAl -SCx ka)-o (88)
. The damped frequency response is therefore determined from these equations,
which yield for the phase angle,
1.2 3 2 1l 2,22 1 z 2
L-gr+ fah -30AT+3cC \-—O)r
_ ss 8 7s's 2 's \a
ran yg = 7. 1.2 .2 (89)
s Ut 5A, 0
and, for the demped freguency response, the equation
1l 1.4 4 2.2 2.4 2 L
7‘\9 Mcsr -SQsCsr-'-Yscsr)As
3 1,22 3 2 1 24 1l 222
+ G % qur -5 QT +BCsr +2ySCSr/A
- Z 2
L 1 2 2 1l .2 “o., b
+L1+ R AR Ay rJ-O (90)

From this one obtains the expression:

2
Ll+ CL‘AL‘+0A ¢ K )Ju

+ (\(‘QCL‘AL‘-3¢,CAL‘+822‘2

- 6o A% - MCA + 16y - 8)
+ (9Q§Ai+ pha A + 16) = 0 (91)

For zero damping (ys = 0), the undamped response (Eq. 76) is obtained.
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L, COMPARISON OF MECHANICAL MODEL
AND LIQUID THEORY EQUATIONS

The ligquid theory developed in Chapter 2 indicates that the wave amplitude

may be assumed to be of the form (eq. 10)

® ® -
- . .= - r
€= L. [‘_. amn Jm \an E_) COS, 6
mz=o n=l1

For the l/2-sub—harmonic antisymmetrical mode, the dominant term is given

tym=n =z 1. Thus, retaining only the first term of the expansion,

C = 511 I, (Xllf) cos © (92)

where, for é% 21, éll is given by equation (27).

Taking only those terms of equation (27) which depend entirely on éll and

making the appropriate substitution from equation (11). one obtains (for

h

R
= 2 2 - - -2 =2
8, + (wll - Ly KllXo cos 2uwt) 8, (1 + Kllkllall)

3T -2 -3z 2= _
+ 0.03478 Ajjajj8)) + Ky AT 8y, 8y =0 (93)

>

where Kll and k are constants given by equations (29—&).

11

Equation (93) may be non-dimensionalized in a manner similar to that used

in the development of the equations of motion for the mechanical medel. With
& Gy %8 (9%)
the result of substituting equation (9&) into (93) is
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Gt kll(cll)2 511%1*‘ 0.03478 (011)2 CC+ ‘”il €11

X
2 2 3 _ 2 _o
+ Kll (CLl) ® 1 P17 = Ly (Cll) - cos 2 wt
where
¢,, = ak,, tanh (A, h) = e tanh{ ¢ hy. ¢ (95)
11 - &My 1% = & 12/ %

A -
as defined in eqguation (56). Also,use has been made of the fact that e =8 A -
The eguation of motion for the undamped sloshing mass of the corresponding

mechanical model is given by equation (69) as

- | X
2. :2 . 2.2 2 22n-1 _, 2 “o
g + 6 E+ 88 + W + qu g = ba(Cy) 3 cos 2at & (96)
where
; S
ui = uil = (All g tanh xll h)

Direct comparison of equations (95) and (96) indicates that n should be
made equal to two, i.e. the non-linear spring should be a cubic spring.

Unfortunately, due to the complexity of the results from the non-linear
ligquid theory, it is not possible to determine analytically a proportionality
factor between mass-displacement in the mechanical model and ligquid amplitude,

thus, o, cannot be determined except by direct comparison of numerical evalu-

1
ations of liquid amplitudes, forces and moments as determined by experiments

(where available), liquid theory, and by the mechanical model.
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4,1 Derivation of the Mechanical Model of the Total Liguid System

The analytical mechanical analogy is designed in such a fashion that it
describes the observed non-linear phenomena.

The liguid in the lower part of the container follows the motion like a
rigid body, and is chosen to have a mass mO and a moment of inertia Io' The
sloshing masses are dencted by m and the spring stiffnesses by kn. The non-
slcehing mass mO is rigidly connected at a height hO below the center of gravity
of the auiczcent 1liquid. To make the mechanical model equivalent to the fluid

system, <The sum of the modal masses must be equal to the total liguid mass.

m:m+ZJm (97)
=1

Aszuming that the sloshing masses are subjected to a damping force pro-
vortional to their velocity relative to the paraboloid, the dissipation function

ci the nth sloshing mass is
) (98)

-

where ¢ = Zn The equations of motion of the mechanical model are now
_ bo!

W .
n nyn

derived with the help of the Lagrange equations. For this reason one determines
the lkinetic and potential energy as well as the dissipation function of the
system (see Figure 2). With ¥ eand z as the displacement of the nth sloshing

mass, m , With respect to the container, with x(t) and 2z(t) as the displace-
h)

ments cf the container and with ¢ the rotation of the container about the z-axis,

o

the kinetic energy is given by:
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The first three terms represent the kinetic energy of the non-sloshing mass,
mo, which is rigidly connected with the tank. The cther term represents the
kinetic energy of the sloshing masses, m . It mav be remarked here that =

pitching motion o(t) was assumed to exhibit small angles o, such that coc o A i

and sin o ~ ©.
The dissipation function is given by

D=2 » ¢ (%2+'22) (100}
T2 L n n

() |

n=1

The potential energy is composed of the 1ifting of the sloshing and non-

sloshing masses and the energy stored in the springs. It is, for small values

of o,

m *® ot *® .
o) 2 g 2 : 1 o4

= = g - + - n X - 22

Y 5 ghom >9 ) mn(hn 2 ) © . omx +tT ) ann
n=l n=1 n=1

®

+ me z, +mEz (101)
n=1

The first term represents the potential energy due to the lifting of the non-

sloshing mass, mo, during a rotational m(t), while the second, third and fourth

terms describe the same effect for the sloshing masses. The last term repre-

sents the accumulated energy in the springs. The coordinates x, z, o, Xn’ and

Lo




z, are related by one equation of constraint, which expresses that the mass

i

point my has to move on a paraboloid., The equation of constraint is

C
£ = 7 - X2 = 0 (102>
- n 2a ‘n

where Cr was found to be

4

[

>

LA
S

h
NG (1
Lefiring a Lagrange function L¥, as
1% = L - Af (10k)

i Telnc the Lagrangien ¢of the system, L =T - V, and X a Lagrange mult

eguations of moticn can be derived with the Lagrange ecuation

-9— { a”* ] - 8;1 —B_D - e
+ \aa_- ) _} - - Q\) ( U )
v - v

where D is the dissipation function and QV are the forces with respect to the
cocrdingtes qv. Anciner method for the derivation of the equations of motion
Jrow s he Lagrange equation is based on the generalized coordinates qv which
zre, by elimination of the equation of constraint, made Independent of each

other, The kinetic energy and dissipation functior in these generslized

coorcinates are:
m m
. _ _©O 2 0 .2, 1 .2
T—"é‘(x—hocp) +?z +—2'Io(p
(106)
1 *® _ . 2 _ Cp 2
= PR o + % ; __l . -+,-.__. . _‘{.
2 L "1 LVn )+ \.hn+ oa n + LZ “%ann T w®)J
n=1
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and

2 _ - C 2
J <4 Lx§+ \;“ x_ xn)_l (107)

D N
n=1

P
2

‘The potential energy is given by

[oe]

C

-8

m . =
e 2 _8 2 2 ‘
V= 2 gho » -o @ My \hn + oz o/ T 89 [ Mm%,
n=1 nzl
® ® C
1 \ )4 N n 2
+ 5 KK, T ), T8 By X, + mez (108)
n=1 n=1

The eguations of motion are derived from the Lagrange equations

d 6T/+ D oT + oV Q (109)
dt \3d ¢ T Ty
EN qu v qu
where the generalized coordinates qv are x, 7z, g and X3 and QX = -Fx,
& =-F,Q =-M, and § = 0 are the generalized forces. The equations of
z z () Yy n

motion are then:

C -
o ‘ .. n ;.2 . o .
mZ + mg + ). M L-chp + 2 5a (xn + ann) - anJ = —FZ (110)

[0}
- i
)

n=1

- C - C -
s . - e 4. D0 . s n _2 ...
mt - mgh® b ) m Bt T ) o Byt ) < o, (1)
1

[~ I8

n
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@©

~ - C
- . 2 | i ee e n . .
IOCP + mOhoX B mohocp + L mn 1 an + X4 \E— ann/ ® +
n=1

C C C C
n 2 .. n 2 s . n 2. ... n . .
\hn + 2a Xn}p__' \hn + 2a Xn/+ LXn+ <+ \hn+ 23 Xn/ QD_‘ \a ann/

- Cn 2 Cn B Cn
- Xt ?Xn-" PR R A S A \Z+ = *nfn " xnm/xnf

® c ®
® . n 2. - ]
+ o, gh ® - 8o .L " \hn+ oa n/ T8 L ™% -My (112)
n=1 n=1

and

— C C -
" . n . . n _2...
mn1|an+x+\a ann)cp"-\hn-'— -é—é-xn/cp_j

(@]

_ C
n .2 n o . . n .

R A - L IR
c

. C
. n . . n. .
LR R, e\t XS

C C,
tm ‘LLX +x+\h+gxn/cp_]\ cpxn/

2
- C C . C
. n . <y . ‘n o, ‘ - . n 2. g 2
+ LZ+ a Xan chpJ \(P T a Xn/ f + cn Xn-'- a2 ann_‘ > @
C ' C
-n - 3 2y -
3 Xn) gpm + k x +mgx =0 (113)
If we now let x(t) = cp(t) = 0 as is the case, we obtain:
- = V4 +
F =mg +mZ + Z (x xnxn) (114)
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o]
- = \ .
F o=+ ) m¥ (115)

n=1
z Cn 2 Cn
- = \ _%3 _ + e i oo ) - .

My m i Bk - Ex ¥ -5 ¥ -7 xR, - e (116)

n=1

and
2 02
. . n 2. n .2 2.,
X + 2wn'ynxn ld+ 2 x_J+ ;2- (xnxn + ann)
2 - ko2 Ch 2
+ o k1+ z xn)xrl = x5 O 2, cos ot n=1,2,--. (117)
nn

The first three equations give the forces and moments which the mechanical
model exerts on the container, whereas the last eguation is the equation of

motion of the sloshing mass, m in the undamped case.

Considering the forces produced by the first sloshing mass, m,, substi-

tuting the mechanical values, and letting

x = Aasint (118)

n 2
and

z=Z cosQt (119)
we obtain,

3rc. b
li -1 + ‘1 et [e’a] A2| 2. %9 € tanhvilE r© (120)
mng (62_1) h I 1 \a/
1 a



tanh (e ) )
Ar, (121)

!mg 2_
€1 1)

and

M tanh( e.2) Ar® tanh (e, =)
L. 12 [1' e, tanh [e Ll] S — ke
mag h ( 2_1) 16 & 1l a (€2_l)
a * & '8
- 2 c1 L %y (122)
tenn(e. B) 2 2 G/
€ €1 &

These values are plotted in Figures 3 through 10, and are compared to the

results of the liquid theory from Section 2.

¥Note:

M
A

mga
of mass of the undisturbed liquid.

of equation (122) is given with respect to the origin at the center
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5. NUMERICAL RESULTS AND CONCLUSIONS

In order to take advantagoe of the experimental results of Dodge, Kana,
and Abramson [3], the numerizal evaluations were performed for a tank which waz
5.72'inches in dianeter and with h/a = 2, Twc differen’ c¢xcitation arplitudes
were used in the computaticns: ZO = 0,0258 inche:s and Zo = 0.0516 inches.

The non-dimensional liguid amplitude Z* as d.cermined from the liquid thecorys

was evaluated at a point r = 2.49 inches and 6 = O by using the equation

R

= 0.837,6 = 0,0t = 7| (12)

gl"'il

*
VA =

= 0.837,8 = 0,0t = 3 ) - ¢

PO

¢

&

where {(r,8,t) is given by equation (32).

*
For the mechanical model, Z 1is given by

h
2¢, tanh (e, =)
- La e &om
z = T - 3,(0.837 ¢)) -5, (57 35) (124)
1

since the relationship between the displacement of the sloshing mass and the

liquid amplitude is given by eguation (2.7) of Ref. L4 as:

2
(el - l) Z
I tenh (e, =
gl “1a

The results of equations (123) and (124) are shown plotted in Figs. 3 and
L, It is evident that ligquid theory and the mechanical model agree fairly
well with the experimental values for small values of Zﬁ however, whereas the
liquid theory predict much smaller amplitudes than those observed in experi-
ments, the mechanical model not only yields values which are in agreement with

the experimental results but alsc shows the inflection points as in the experi-

mental results.
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Comparison of the liquid forces and moments must be made on a direct basis
between the liquid theory and the mechanical model, since there are no experi-
mental values available, We now see that a value of o = 2 is best suited.
Again there is close agreement between the liquid theory and the mechanical
model in the range for which Z* was small., However, in the freguency range
for which the liquid theory predicted smaller amplitudes than the experiments
showed, one finds that the mechanical model predicts larger values for both
the liquid forces and the liquid moment. As would be expected, the transverse
component of the liquid force, shown in Figs. 5 and 6 yields the same type of
inflection points as those given by the non-dimensional liguid amplitude Z*.

Summarizing, one concludes that the mechanical model should describe the
non-linear sloshing phenomena accurately enough for most engineering applica-
tions.

In fact, it yields better results for the free surface eievation than the

non-linear liquid theory.
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Figure 3. Non-Dimensional Liquid Amplitude (e = 0.0165)
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